
What The HELK?
Enabling Graph Analytics for Effective

Threat Hunting

OSSEM

THP

HELK

Agenda
● Effective Threat Hunting?
● Current state of threat hunting programs
● Graph Theory

○ Definition
○ Origins
○ Types

● Graph Analytics (Queries, Algorithms, Analytics)
○ Blue & Red embracing graph analytics

● An ELK with Graphing capabilities
○ HELK
○ Spark & GraphFrames

● GraphFrames examples
● Further Research

_____ for Effective Threat Hunting

How are you effective?
What does being effective even mean?

Efficiency Efficacy

Effectiveness
https://twitter.com/Cyb3rPandaH

Efficiency
The way resources are used (or
wasted), How much I make the
most of the resources I have

Efficacy
It doesn’t matter how we do it,
but only on what we accomplish

Effectiveness
Accomplishes the goals (to be
efficacious) employing the best
and most economic methodology
(to be efficient).

Efficiency

● Choosing an adversary model
(MITRE ATT&CK)

● Do we even have the data?
○ Do we have the right data?

● Do we have the right technology
○ SQL, NOSQL, Graph Database

● The right skills in the team
● Prioritizing adversary techniques

Efficacy
● Let’s find evil!
● Uncovering Incidents vs Validating

Detection of adversaries
● Detect all attack variations!! Can

you?

Current State of Threat Hunting

LOG IT ALL -> HUNT -> FIND EVIL … Right??

Threat Hunting
What can be
automated?

- Not everything can be
automated
- Enhance SOC
operations

Lessons Learned

- Metrics
- Report Findings
- Transition to IR?
- What didn’t work?

Hunt

- Data Analytics
 > Behavioral
 > Anomalies/Outliers
- Validate Detection

Pre-Hunt

- Identify Data
Sources
- Define Hunt Model
- Set Scope
- Define Team Roles
- Research
- Develop Hypothesis

Threat
Hunting

Threat Hunting

Threat
Hunting

What can be
automated?

- Not everything can be
automated
- Enhance SOC
operations

Lessons Learned

- Metrics
- Report Findings
- Transition to IR?
- What didn’t work?

Pre-Hunt

- Identify Data
Sources
- Define Hunt Model
- Set Scope
- Define Team Roles
- Research
- Develop Hypothesis

Hunt

- Data Analytics
 > Behavioral
 > Anomalies/Outliers
- Validate Detection

Threat Hunting

Threat
Hunting

Pre-Hunt

- Identify Data
Sources
- Define Hunt Model
- Set Scope
- Define Team Roles
- Research
- Develop Hypothesis

What can be
automated?

- Not everything can be
automated
- Enhance SOC
operations

Lessons Learned

- Metrics
- Report Findings
- Transition to IR?
- What didn’t work?

Hunt

- Data Analytics
 > Behavioral
 > Anomalies/Outliers
- Validate Detection

More data more problems?
● We are generating more data than ever!
● Collecting and storing security event data has become

an inexpensive task for organizations of all sizes
● This has benefited security analysts from a data

availability perspective!
● However, there is so much data that traditional SIEM

capabilities are limiting the way that data can be
described or analyzed by security analysts

Don’t just try to find the needle in the
haystack!

Find relationships & structural
patterns

Identify the most interesting
ones...

Graph Analytics

FOLLOWS

What is a graph?
● A logical representation of data via:

○ Set of Vertices (Nodes)
○ Set of Edges (Relationships or

links)
● Small network of Twitter

○ Vertices
■ @Cyb3rWard0g
■ @Cyb3rPandaH
■ @THE_HELK

○ Edges
■ FOLLOWS

● Basic notation: G = (V, E)

FOLLOWS

FO
LL

OW
S

FO
LL

OW
S

FOLLOWSFOLLOWS

User

User

User

Basic Graph Terminology (A few)
● Order: Size of the vertex set in a graph
● Path: A walk (sequence of vertices and edges)
● Size: Number of edges that the graph has
● Triangle: A cycle of length 3 in a graph
● Walk: A walk is an alternating sequence of vertices and edges,

starting and ending at a vertex, in which each edge is adjacent
in the sequence to its two endpoints.

● Isolated: It is a vertex whose degree is zero

https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

Basic Graph Terminology (A few)
● Adjacent: Relation between two vertices that are both

endpoints of the same edge
● Degree: Number of edges on a vertex
● Depth: It is the number of edges in the path from the root to

the node (vertex)
● Neighbor: A vertex that is adjacent to a given vertex
● Order: Size of the vertex set in a graph

https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms

The Origins of Graph Theory (Seven Bridges of Konigsberg)

● Leonhard Euler in 1736
● Konigsberg was a city in Germany

that is now Kaliningrad, Russia
built around a river Pregel River

● What was the problem?
○ Can you cross every single

bridge (7 bridges) once and
ONLY once?

● What did Leonhard do?
○ Considered each island as a

node and each bridge as an
edge

○ 4 vertices & 7 edges

The Origins of Graph Theory (Seven Bridges of Konigsberg)

● Leonhard Euler in 1736
● Konigsberg was a city in Germany

that is now Kaliningrad, Russia
built around a river Pregel River

● What was the problem?
○ Can you cross every single

bridge (7 bridges) once and
ONLY once?

● What did Leonhard do?
○ Considered each island as a

node and each bridge as an
edge

○ 4 vertices & 7 edges

The Origins of Graph Theory (Seven Bridges of Konigsberg)

● Leonhard Euler in 1736
● Konigsberg was a city in Germany

that is now Kaliningrad, Russia
built around a river Pregel River

● What was the problem?
○ Can you cross every single

bridge (7 bridges) once and
ONLY once?

● What did Leonhard do?
○ Considered each island as a

node and each bridge as an
edge

○ 4 vertices & 7 edges

The Origins of Graph Theory (Seven Bridges of Konigsberg)

● Euler realized that there was no way to cross
each bridge only once

● Eulerian graph/walk was born
○ Vertices that are not a start or end

vertex must have even degree
○ We can have a start vertex which is

different than the end vertex
■ We can have only odd degree at

most twice (Start & End)
○ Number of odd degree vertices is 0 or 2

● This was one of the first examples of what a
graph was and how it was used

START

END

3

3

3

5

The Origins of Graph Theory (Seven Bridges of Konigsberg)

● Euler realized that there was no way to cross
each bridge only once

● Eulerian graph/walk was born
○ Vertices that are not a start or end vertex

must have even degree
○ We can have a start vertex which is

different than the end vertex
■ We can have only odd degree at

most twice (Start & End)
○ Number of odd degree vertices is 0 or 2

● This was one of the first examples of what a
graph was and how it was used

START

END

3

2

3

4
X

A Few Graph Types
● Undirected graph: a graph

that doesn’t have a particular
direction for edges.

https://medium.freecodecamp.org/i-dont-understand-graph-theory-1c96572a1401

● Directed graph: a graph in
which edges have a particular
direction.

A Few Graph Types
● Connected graph: A graph where

there is no unreachable vertex.
There must be a path between
every pair of vertices.

https://medium.freecodecamp.org/i-dont-understand-graph-theory-1c96572a1401

● Disconnected graph: A graph
where there are unreachable
vertices. There is not a path
between every pair of vertices.

A Few Graph Types
● Weighted Graph: A graph whose vertices or edges have been assigned

weights.

50

https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weighted_graph

20

10

35

70

A Few Graph Types
Bipartite Graphs: Type of graph whose vertex sets can be partitioned in two
sets

V1 V2

X

COMPLETE STAR

Walk, Path and Cycle
Open Walk:

● When no vertex appears more than on is
called a path

● A path does not intersect itself unless it
is a closed walk

Closed Walk:

● Initial and final vertex appear more than
once in the walk is called a circuit. A
Circuit is also called a Cycle

● In a cycle, vertices can be arranged in a
cyclic sequence

Path:

● Start & End vertices have degree ONE
● Intermediate vertices have degree 2
● Vertices arranged in a sequence

Cycle

Path

Triangle

Tree Graphs
● Limited versions of a graph
● Directed Acyclic Graphs (DAG)
● Graph traversal applies to trees too
● Traversing to a tree is a little different than

traversing a graph
○ We usually check or update the nodes

● Walking through a tree then involves not
passing through the same node twice

● Order of the tree traversal helps to classify
the different traversal algorithms

● Order matters!! We either go deep or go
wide when traversing a tree

Graph Analytics

What are graph analytics?
Is it a graph query?

Graph Analytics (3 Levels)
Graph Queries

(V1)-[E1]->(V2); (V2)-[E2]->(V3)

Graph Analytics:

Via label propagation, identify reasonable
partitions within my graph (statistical approach)

https://www.forbes.com/sites/danwoods/2018/04/30/improve-your-graph-iq-what-are-graph-queries-graph-algorithms-and-graph-analytics/#3c63c3731961

Graph Algorithms:

 Apply graph reasoning

Graph Algorithms
Pathfinding: Finds the shortest path
or evaluate route availability

● Breadth-First & Depth-First Search
● Shortest Path

Centrality: Determines the
importance of distinct nodes in the
network

● Page Rank
● In-Degree & Out-Degree

Community-Detection:
Evaluates how a group is clustered
or partitioned

● Connected Components
● Strongly Connected
● Label Propagation

https://neo4j.com/blog/graph-algorithms-neo4j-15-different-graph-algorithm
s-and-what-they-do/?platform=hootsuite

Pathfinding

Breadth-First Search
Depth-First Search
Shortest Path

Depth-First Search
● Go deep into one node before asking all

the childrens (neighbors)
● Deep traversal into a data structure
● Difference between graph and tree

traversal is deciding where to start
searching!

● Stack process:
○ 1,2
○ 1,2,3
○ 1,2,3,4
○ 1,2,3
○ 1,2
○ 1,5 -> 1,5,6 -> 1,5,6,7 https://gist.github.com/chrisco/ae1ba58b9df4f92e1db6c3adf39b71b0

Breadth-First Search
● Searching through a tree or data

structure level by level out
● Broad traversal into a data

structure
● Wider before going deep
● Difference between graph and tree

traversal is deciding where to start
searching!

● Queue Process
○ 1,2,3,4
○ 1,2,3,4,5,6,7,8
○ 1,2,3,4,5,6,7,8,9,10

https://gist.github.com/chrisco/ae1ba58b9df4f92e1db6c3adf39b71b0

Breadth-First Search
● Searching through a tree or data

structure level by level out
● Broad traversal into a data

structure
● Wider before going deep
● Level order in a binary tree
● Difference between graph and tree

traversal is deciding where to start
searching!

● Queue Process
○ 1,2,3,4
○ 1,2,3,4,5,6,7,8
○ 1,2,3,4,5,6,7,8,9,10

b d e

fa

g

hc

Breadth-First Search
● Searching through a tree or data

structure level by level out
● Broad traversal into a data

structure
● Wider before going deep
● Level order in a binary tree
● Difference between graph and tree

traversal is deciding where to start
searching!

● Queue Process
○ 1,2,3,4
○ 1,2,3,4,5,6,7,8
○ 1,2,3,4,5,6,7,8,9,10

b d e

fa

g

hc

1

1 2

2 2 3

3

Shortest Path
● BFS algorithms will keep track of

every single node’s “parent” and
the nodes that come before it.

● We can then use the pointers of
the path that we too in order to
determine a shortest path in the
graph.

● Dijkstra’s algorithm uses weights
○ GPS (Distance)

● Single source shortest path
○ One vertex to the other

vertices

b d e

fa

g

hc

1

1 2

2 2 3

3
5 8 2

10

10

10

10

10

10

10

10

Adversarial Graph Application - BloodHound
● Adversaries used to rely on extremely tedious manual “derivative

local admin” methodology – used to take days or weeks to find
paths to domain admin.

● PowerView enabled easy local admin, user session, and security
group enumeration, all with just domain authenticated access
(no local admin needed!)

● BloodHound uses a directed graph using the above information
to find privilege escalation attack paths from any node to any
other node (e.g.: attack paths to the Domain Admins group)

● BloodHound compresses the time needed to escalate privileges
in a domain from days or weeks to minutes or hours.

● See our DEFCON 24 video for more information:

https://www.youtube.com/watch?v=wP8ZCczC1OU

https://www.youtube.com/watch?v=wP8ZCczC1OU

Defensive Graph Application - BloodHound
● Adversaries use BloodHound to find not just one, but ALL

attack paths in a domain that rely on stolen credentials, AD
object control, and GPO control.

● Defenders use BloodHound to find the same attack paths and
shut them down before an attacker can.

● BloodHound also enables easy, graphical local admin auditing
and nested security group memberships.

● Several blue teams run BloodHound collection and analyze the
results on a monthly basis to see how attack paths are evolving
over time in their environments.

● See our blog post for more info:
https://posts.specterops.io/introducing-the-adversary-resilience

-methodology-part-one-e38e06ffd604

https://posts.specterops.io/introducing-the-adversary-resilience-methodology-part-one-e38e06ffd604
https://posts.specterops.io/introducing-the-adversary-resilience-methodology-part-one-e38e06ffd604

Centrality

● Page Rank
● In-Degree & Out-Degree

Page Rank
● Larry Page, cofounder of Google,

created the algorithm to rank websites
in their search engine results.

● If you have links from other sites that
have high page rank, you get a high
page rank (Recursive)

● It counts links to a page to determine a
rough estimate of how important the
website is.

● More important websites are likely to
receive more links from other websites.

In-Degree & Out-Degree
In- Degree Out-Degree:

Community-Detection

● Connected Components
● Strongly Connected
● Label Propagation

Connected Components
● I want to partition my graph

into parts that are connected
● Identifiers get applied to the

vertices of the same group
● A connected component

defines an (undirected)
subgraph that has connections
to itself but does not connect
to the greater graph

Chambers, Bill; Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing Made Simple (Kindle Locations 17119-17122). O'Reilly Media. Kindle Edition.

● It takes directionality into account
● It is a subgraph that has paths between all pairs of vertices inside it.

Strongly Connected

Chambers, Bill; Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing Made Simple (Kindle Locations 17170-17171). O'Reilly Media. Kindle Edition.

Label Propagation
● Not a label defined as a property of the vertex

○ It is more like a tag
● At the end similar vertices will have the same tags
● semi-supervised machine learning algorithm that assigns labels to previously

unlabeled data points
● Each node in the network is initially assigned to its own community. At every

superstep, nodes send their community affiliation to all neighbors and update
their state to the mode community affiliation of incoming messages.

OK, let just graph
EVERYTHING…. right?

HELK
An open source ELK with

Advanced Analytics Capabilities

https://github.com/Cyb3rWard0g/HELK

[ALPHA]

Architecture

https://github.com/Cyb3rWard0g/HELK

Main Features Definitions
● Kafka: A distributed publish-subscribe messaging system that is designed to be fast, scalable,

fault-tolerant, and durable.
● Elasticsearch: A highly scalable open-source full-text search and analytics engine.
● Logstash: A data collection engine with real-time pipelining capabilities.
● Kibana: An open source analytics and visualization platform designed to work with

Elasticsearch.
● ES-Hadoop: An open-source, stand-alone, self-contained, small library that allows Spark to

interact with Elasticsearch.
● Spark: A fast and general-purpose cluster computing system. It provides high-level APIs in Java,

Scala, Python and R, and an optimized engine that supports general execution graphs.
● GraphFrames: A package for Apache Spark which provides DataFrame-based Graphs.
● Jupyter Notebook: An open-source web application that allows you to create and share

documents that contain live code, equations, visualizations and narrative text.

https://github.com/Cyb3rWard0g/HELK

`

GraphFrames
● Currently an Apache Spark Package
● Graph library based on DataFrames
● Python, Java & Scala APIs
● All algorithms from GraphX
● Queries via SparkSQL APIs & DataFrames
● Cypher-Like graph queries
● Supports DataFrame data sources,

allowing writing and reading graphs using
many formats like Parquet, JSON, and CSV

https://databricks.com/blog/2016/03/03/introducing-graphframes.html

ES-Hadoop

GraphFrames API

How does GraphFrames compare to graph databases?

● Spark is not a database
● Spark is a distributed computation engine
● Spark does not store data long-term
● Spark is capable to build a graph

computation via Graphframes

A graph is composed by two dataframes (Vertices & Edges)

How do you build a Graph?

id name age

1 Roberto 30

2 Jose 22

3 Pedro 25

4 Norah 33

5 Clem 28

src dst relationship

1 2 Follow

2 3 Follow

3 4 Follow

4 1 Follow

5 2 Follow

G

V E

,

Graph Queries: MOTIF Finding
● Motifs are a way of expressing structural patterns in a graph
● We are querying for patterns in the data instead of actual data.
● vertex connects to another vertex:

(a)-[ab]->(b)
● The letters inside of parenthesis or brackets do not signify values but

signify what the columns should be named in the resulting DataFrame

(a)-[]->(b)

Graph Algorithms
Pathfinding: Finds the shortest path
or evaluate route availability

● Breadth-First & Depth-First Search
● Shortest Path

Centrality: Determines the
importance of distinct nodes in the
network

● Page Rank
● In-Degree & Out-Degree

Community-Detection:
Evaluates how a group is clustered
or partitioned

● Strongly Connected
● Label Propagation
● Triangle Counting

https://neo4j.com/blog/graph-algorithms-neo4j-15-different-graph-algorithm
s-and-what-they-do/?platform=hootsuite

HELK - Show me now!

● Red Team Training Data set
● Data Sources: Sysmon EID 3 (Network

Connections)
● Explore the data!

HELK - Build A Graph

● Elasticsearch OR CSV
● Sysmon Index

○ Event ID 3 : Network Connection

Connect to Elasticsearch -> Read Sysmon Index
%python

spark = SparkSession.builder \
 .appName("HELK") \
 .config("es.read.field.as.array.include", "tags") \
 .config("es.nodes","helk-elasticsearch:9200") \
 .getOrCreate()

df = spark.read.format("org.elasticsearch.spark.sql").\
load("logs-endpoint-winevent-sysmon-*/doc")

Select Network Events and specific field names
%python

df = df.filter(df.event_id == 3)

df = df.select("process_name","host_name",\
"src_ip","src_port_number",\
"Dst_host","dst_ip","dst_port_number",\
"process_guid","user_name","action")

Read from CSV
%python

rto_df = spark_graph\
 .read\
 .option("inferSchema", "true")\
 .option("header", "true")\
 .csv("/tmp/RTO0518_EID3_PART0.csv")

Define Vertices
%python

vertices = rto_df.withColumn("id", rto_df.ip_src)\
 .filter(rto_df.ip_src != "10.10.10.255")\
 .filter(rto_df.user_name != "NETWORK SERVICE")\
 .select("id", "user_name", "process_name",
"port_dst_number")\
 .distinct()

Define Edges
%python

edges = rto_df.selectExpr\
 ("ip_src as src","ip_dst as dst")

HELK - Graph Queries

MOTIF Finding
%python

G.find("(a)-[]->(b);(b)-[]->(a)")

HELK - Graph Algorithms

● Centrality: In-Out Degrees & PageRank
● Community: Connected Components

PageRank Algorithm
%python
ranks = subgraph.pageRank(resetProbability=0.15,
maxIter=10)
ranks.vertices\
 .orderBy(desc("pagerank"))\
 .select("id", "pagerank")\
 .show(10)

IN & OUT Degrees
Using the following query, you can find interesting people in the social
network that might have more influence than others.

in_degree = subgraph.inDegrees

in_degree.orderBy(desc("inDegree")).show(5, False)

out_degree = subgraph.outDegrees

out_degree.orderBy(desc("outDegree")).show(5, False)

Connected Components
● Computes the connected

component membership of each
vertex and returns a graph with
each vertex assigned a component
ID

● Applications:
○ Clustering
○ Anomaly Detection
○ Fraud

%python

spark.sparkContext.setCheckpointDir("/t
mp/checkpoints")

SubGraph = Graph(Vertices,
Edges.sample(False, 0.2))

cc = SubGraph.connectedComponents()

HELK - Future

● Cyphe for Apache Spark (CAPS)
● Zeppelin Notebook
● Kibana Vega Visualizations

Cypher for Apache Spark

Kibana Vega Viz

Information

https://github.com/Cyb3rWard0g

@Cyb3rWard0g

Resources
● https://posts.specterops.io/welcome-to-helk-enabling-advanced-analytics-capabilities-f0805d0bb3e8
● https://www.youtube.com/watch?v=wP8ZCczC1OU
● https://posts.specterops.io/introducing-the-adversary-resilience-methodology-part-one-e38e06ffd604
● https://graphframes.github.io/user-guide.html#graph-algorithms
● https://medium.com/basecs/leaf-it-up-to-binary-trees-11001aaf746d
● https://neo4j.com/blog/graph-algorithms-neo4j-15-different-graph-algorithms-and-what-they-d

o/?platform=hootsuite
● https://neo4j.com/blog/top-13-resources-graph-theory-algorithms/
● https://neo4j.com/graph-analytics/?ref=blog
● https://neo4j.com/blog/graph-algorithms-neo4j-connections-drive-discoveries/
● https://medium.com/@KerrySheldon/breadth-first-search-in-apache-spark-d274403494ca
● https://www.forbes.com/sites/danwoods/2018/04/30/improve-your-graph-iq-what-are-graph-queries-graph-alg

orithms-and-graph-analytics/#3c63c3731961
● https://neo4j.com/blog/cypher-for-apache-spark/?utm_content=buffer44adf&utm_medium=social&utm_source

=twitter.com&utm_campaign=buffer
● https://neo4j.com/blog/top-13-resources-graph-theory-algorithms/

https://posts.specterops.io/welcome-to-helk-enabling-advanced-analytics-capabilities-f0805d0bb3e8
https://www.youtube.com/watch?v=wP8ZCczC1OU
https://posts.specterops.io/introducing-the-adversary-resilience-methodology-part-one-e38e06ffd604
https://graphframes.github.io/user-guide.html#graph-algorithms
https://medium.com/basecs/leaf-it-up-to-binary-trees-11001aaf746d
https://neo4j.com/blog/graph-algorithms-neo4j-15-different-graph-algorithms-and-what-they-do/?platform=hootsuite
https://neo4j.com/blog/graph-algorithms-neo4j-15-different-graph-algorithms-and-what-they-do/?platform=hootsuite
https://neo4j.com/blog/top-13-resources-graph-theory-algorithms/
https://neo4j.com/graph-analytics/?ref=blog
https://neo4j.com/blog/graph-algorithms-neo4j-connections-drive-discoveries/
https://medium.com/@KerrySheldon/breadth-first-search-in-apache-spark-d274403494ca
https://www.forbes.com/sites/danwoods/2018/04/30/improve-your-graph-iq-what-are-graph-queries-graph-algorithms-and-graph-analytics/#3c63c3731961
https://www.forbes.com/sites/danwoods/2018/04/30/improve-your-graph-iq-what-are-graph-queries-graph-algorithms-and-graph-analytics/#3c63c3731961
https://neo4j.com/blog/cypher-for-apache-spark/?utm_content=buffer44adf&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://neo4j.com/blog/cypher-for-apache-spark/?utm_content=buffer44adf&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
https://neo4j.com/blog/top-13-resources-graph-theory-algorithms/

