
Morph Your
Malware!

22.07.2022



2

Sebastian Feldmann

Code White Red Team

Red Team Operator

Offensive Tooling

Building custom tools / C2 used in our
assessments



3

Syllabus

Executing and hiding In Memory Malware

Techniques used to avoid detection by:
AV/EDR

Analysts

Fingerprinting infected processes
Memory

Threadstates

Callstacks

• And how to avoid being fingerprinted
• Blending in with False-Positives

Advanced techniques



Execution and Injection



5

Offensive Tooling and Execution

Protecting and hiding tools has priority
We do not want to get caught

Custom tooling is complex and precious

Dropping tools on disk is considered an opsec fail
Operators forget tools on disk

AV/Analysts pick them up

Execution of tools purely in memory 90% of the time



6

Execution

In Memory Malware needs a host process
Usually injected into carefully chosen process

Chosen host process behaviour should be similar to behaviour
of injected tool

Internet/Intranet connections, DPAPI, Probably known to legitimately
access lsass …

I like to target browsers

Process Injection is heavily monitored ...



7

Open a handle Inject payload Execute payload



Handle Creation



9

Opening a Handle

Process Injection requires a handle to target process
Handle with certain access masks are suspicious

Handle creation easy to observe for EDR/Sysmon
Kernel notifies Security drivers (Kernel Callback)



10

Handle Duplication

Other ways to get a handle to process

Handle Cloning
Find a process with suitable handle, clone and reuse it

Targeted process is not opened

HandleKatz leverages this technique to obtain a handle to lsass

• Problem: suitable handle does not always exist. Not reliable

https://github.com/codewhitesec/handlekatz


11

Handle Elevation

Less known: Existing handles can be upgraded

Duplicate it with higher access rights



12

Handle Elevation

Does not appear in Sysmon

But: Windows Security Log Event ID 4656 (Must explicitly be

configured per process)



13

Opening a Handle

Obtaining a handle was only the first step

Now we need to use it to inject our payload

Problem: Injection is heavily monitored by AV/EDR
Userland Hooks

Kernel Callbacks

Event Tracing for Windows (Threat Intelligence Provider)



Userland Hooks and Syscalls



15

Userland Hooks

AVs like to redirect execution flow of suspicious API calls

Redirected so that AV can learn when and how they were used
Missing telemetry. Hooks are a patch to gain insights

Syscall stubs typically used for injection are hooked
NtMapViewOfSection, NtQueueApcThread …



16

Userland Hooks



17

Userland Hooks



18

Userland Hooks – Direct Syscalls

Conduct Syscalls without using hooked ntdll.dll
Let your code do the Syscalls

Hook does not apply



19

Userland Hooks – Direct Syscalls

Bypasses Userland Hooks

Obvious problem
All Syscalls should go through Ntdll

Any other module conducting Syscalls is suspicious



20

Direct Syscalls – Sysmon

Usage of direct Syscalls (Dumpert by @OutflankNL)

Usage of Winapi



21

Fingerprinting Direct Syscalls

Sometimes it can be done via Sysmon

But there are way more Syscalls than NtOpenProcess
Cannot be observed via Kernel Callback!

Additional frameworks might help



22

Direct Syscalls – Hooking Nirvana

Nirvana is an instrumentation engine used by Microsoft
Present since Vista

https://www.usenix.org/legacy/events/vee06/full_papers/p154-
bhansali.pdf

Can be used to monitor and control user mode processes
without recompiling target

NtSetInformationProcess()

Allows defining callbacks for Systemcalls upon return from
kernelmode



23

Direct Syscalls – Hooking Nirvana

Can be used to verify that each Systemcall returns to Ntdll

Sample implementation by @winternl

https://winternl.com/detecting-manual-syscalls-from-user-mode/

Can potentially be used by EDR/AV to identify direct Syscalls

Performance overhead might be a problem though

https://twitter.com/winternl_t
https://winternl.com/detecting-manual-syscalls-from-user-mode/


24

Userland Hooks - RecycledGate

Need to make sure that Syscalls still go through Ntdll.dll

AV does not hook every Syscall
Only those it is interested in

Some Syscall stubs are not hooked

• All stubs do the same, but with a different Syscall number

Mov eax, [SysNr]; 
syscall ;
ret;



25

• Idea:

Resolve Syscall number using Halosgate
Technique by @SEKTOR7net

Initialize Syscall manually

Reuse existing syscall;ret instructions of clean syscall stub

Jump here

Userland Hooks - RecycledGate



26



27

Userland Hooks - RecycledGate

Bypassing userland hooks but still going through Ntdll

Released an implementation: RecycledGate:

https://github.com/thefLink/RecycledGate

https://github.com/thefLink/RecycledGate


28

Userland Hooks - RecycledGate

There are still IOCs though:
1. Usually Syscalls go through Kernelbase.dll -> ntdll.dll

2. Syscalls return to Ntdll.dll but not to the correct stub associated
with executed Syscall :-)

Recap:
Userland hooks are still a thing in 2022

Many AV/EDR still rely heavily on them

Why?
Monitoring from kernel can cause stability issues for security vendors

Missing telemetry, userlandhooks are more a patch

Userland hooks can efficiently and stealthily be bypassed



29

Userland hooks

We are now able to conduct memory operations on remote 
processes

Able to inject payload and execute it
Can use NtMapViewOfSection, NtQueueApcThread and so on

Really?



30

ETW and Kernel Callbacks

Some facts to keep in mind

Some Syscalls trigger a kernel callback
(NtOpenProcess/CreateRemoteThread)

Other can be observed by ETW

Microsoft-Windows-Threat-Intelligence (EtwTI)
AV/EDR have begun subscribing to this provider

Delivers events for: APCs, Suspend/Resume Thread / Allocation of
abnormal memory pages

Provider sits in Kernel



31

ETW and Process Injection

EtwTI provides enough telemetry to observe typical process 
injection techniques

DeviceEvents ActionTypes:
NtMapViewOfSectionRemoteApiCall

NtAllocateVirtualMemoryRemoteApiCall

…

Problem: Many False Positives

What matters: 
Which process injects where?

What is being injected?

Next problem? Static Signatures



Evading Static Signatures



33

Static Signatures

We successfully injected payload into target process

Yara rules are applied by AV and identify known bad
Cobaltstrike, Meterpreter, Empire …

Multiple ways to bypass:
Polymorphism

Sleep Masks

...



34

Polymorphism

Decryption Stub

Encrypted Payload

Decryption Stub

Decrypted Payload



35

HelloWorld.bin



36

Injected HelloWorld.bin



37

HelloWorld.bin: Shikata Ga Nai



38

Injected HelloWorld.bin encoded with Shikata Ga Nai



39

Polymorphism

Problems:
Needs RWX

Decryption stub can be fingerprinted

After decryption, malware is not protected and plain in memory

Only helps to bypass initial memory scan and probably emulators
giving up after the first x emulated instructions



40

Sleepmask

Concept introduced by Cobaltstrike 3.12

Core Idea:
• Observation: A beacon mostly sleeps and waits for commands

• Beacon obfuscates itself in memory while sleeping

Beacon obfuscated
while sleeping Plain, active beacon



41

Sleepmask Limitations

Problem:
Sleepmask itself can be fingerprinted (better customize this)

• Other memory artifacts (More later)

• I like to use another concept



42

Keyless-Polymorphism

Idea is to change appearance of a program on instruction level

No encoding / encryption
No RWX necessary

Multiple ways:
Substitute instructions with sequence of equivalent instructions

Add useless instructions

Add complete trash and a jump over the trash

….

Unclear terminology: Polymorphism? Metamorphism?

In this talk: Keyless-Polymorphism :'D



43

Keyless-Polymorphism – Substitutions



44

Keyless-Polymorphism – Substitutions



45

Keyless-Polymorphism – Substitutions



46

Keyless-Polymorphism – Trash

Code

Trashbytes

Code

Jump



47

Keyless-Polymorphism – Result



48

Keyless-Polymorphism

Helps protecting your tools from automated memory scanners

Powerful if enough instructions are substituted

Needs source code!

Makes payload significantly larger

Strings and constants need to be encrypted/obfuscated
additionally

Doing this by hand is annoying …
Better automate this



49

Injected HelloWorld.bin



50

Injected HelloWorld.bin.SpiderPIC



51

Recap

We gained a handle in a stealthy way

Defeated userland hooks while still using Ntdll.dll

Defeated scanners using keyless-polymorphism

Infected processes leave a lot of other IOCs ….



Suspicious Artifacts



53

Memory Artifacts

Windows has roughly three types of memory
Private: Heap, Stack

Mapped: File mapping, IPC ..

Image: Executables (DLL/EXE)

Usually only Image committed
memory is executable

Exceptions: Managed Code 
like C# due to JIT ;-)



54

Memory Artifacts

When injecting, we obviously need to allocate executable
memory in remote process

Problem: How to get executable memory?

Memory Scanners like Moneta by @_forrestorr reliably detect
abnormal memory allocations

https://github.com/forrest-orr/moneta/

https://github.com/forrest-orr/moneta/
https://twitter.com/_forrestorr


55

Memory Artifacts

VirtualAllocEx or NtMapViewOfSection can be used

Problem: Executable, but private/mapped memory

Abnormal, definitely an IOC to check



56

Memory Artifacts

DLL Hollowing: Load an unused DLL 

Replace .text segment with your code

Problems:
• .text segment in memory is not the same as on disk

• Loaded DLL is not listed in import address table (IAT)



57

Bypassing Memory Scanners using ROP

Memory scanners can be bypassed by changing page
permissions

Idea is to mark beacons page as PAGE_NO_ACCESS or
PAGE_READ_ONLY while Sleeping

Problem: How to mark own code as non executable … while
executing?

Return Oriented Programming is the answer!

Use Stack Pivoting and existing small code snippets from
Ntdll.dll



58

ROP ROP ROP

Beacons Sleep() most of the time
Waiting for new commands

Idea: Before sleeping carefully set up a ROPChain calling:

VirtualProtect(AddressBeacon, lenBeacon, PAGE_NO_ACCESS, 
pDword);

Sleep(5000);

VirtualProtect(AddressBeacon, lenBeacon, PAGE_EXECUTE_READ, 
pDword);

Original Idea: Gargoyle (x86 + Relies on APC)
https://labs.withsecure.com/blog/experimenting-bypassing-memory-scanners-with-cobalt-strike-and-gargoyle/



59

Set up ROP Chain on stack before Sleeping



60

ROPPED To VirtualProtect(AddrBeacon, PAGE_NO_ACCESS ...



61

Ropped To Sleep(5000)



62

Ropped To VirtualProtect(AddrBeacon, PAGE_EXECUTE_READ …



63

DeepSleep

POC: DeepSleep

https://github.com/thefLink/DeepSleep/

https://github.com/thefLink/DeepSleep/


64

Alternatives

Many other implementations using various techniques:

https://github.com/Cracked5pider/Ekko

https://github.com/SecIdiot/FOLIAGE/

…

Idea is always the same: change page permissions while
sleeping

https://github.com/Cracked5pider/Ekko
https://github.com/SecIdiot/FOLIAGE/


65

Really Necessary?



66

Memory Artifacts - False Positives

Memory artifacts alone are a good first indicator
But have way too many false positives

Anti exploit techniques (Browser like to hook CreateThread)

Can be bypassed using Gargoyle-like techniques

Need more metrics to identify infected processes



67

Artifacts – Suspicious Thread States

Beacons spend most of the time waiting for new commands

Developers tend to use Sleep() to make their beacons wait
Sleep (Kernel32.dll) is a wrapper for NtDelayExecution (Ntdll.dll)

Sleep sets thread in special waiting state: DelayExecution

Some stats of a random Windows 10 machine:
~1500 Threads

~ 20 Threads have state: DelayExecution (Probably beacons)

• Too many to check, need even more metrics



68

Artifacts – Suspicious Callstacks

Normal Stack

Stack corrupted / contains unknown regions



69

Artifacts – Suspicious Callstacks

Deepsleep's stack is abnormal

Calltrace is broken

VirtualProtect calls Sleep!?



70

Artifacts – Putting it all together

Ouestion: Out of the ~1500 Threads, how many
A) Are in state: DelayExecution

B) Have a stacktrace to DelayExecution containing
unknown/tampered regions?

Answer: Only one. And it is a beacon



71

Hunt-Sleeping-Beacons

Created a tool to automate these steps

Hunt-Sleeping-Beacons
Enumerates threads in DelayExecution

Checks callstack for unknown regions and replaced .text sections

https://github.com/thefLink/Hunt-Sleeping-Beacons/

https://github.com/thefLink/Hunt-Sleeping-Beacons/


72

Hunt-Sleeping-Beacons: DeepSleep



73

Callstacks and Threadstates – Bypass and False positives

False positives: Updater, Crappy C# Applications

Easy bypasses for Hunt-Sleeping-Beacons:
Spoof callstack [1]

Do not use Sleep to wait between callbacks

• Sets thread in Wait:UserRequest. Way more common

• [1] https://www.unknowncheats.me/forum/anti-cheat-bypass/268039-x64-return-
address-spoofing-source-explanation.html

https://www.unknowncheats.me/forum/anti-cheat-bypass/268039-x64-return-address-spoofing-source-explanation.html


74

Artifacts Summary

Callstacks leave significant IOCs
Not only applies to NtDelayExecution but also other Syscalls

Memory scanners can be fully bypassed using Gargoyle like 
techniques

C2 coders should avoid Sleep()
Internally, I use a modified version of DeepSleep using

CreateWaitableTimer(); SetWaitableTimer(); WaitForSingleObject()



Tool Releases



76

Metamorphism – SpiderPIC

Releasing SpiderPIC

Automates Keyless-Polymorphism to .asm files
Instruction substitution

Useless instructions

Trash and jump over trash



77

Integration into Makefile



78

Lastenzug

Releasing Socks4a proxy implemented as PIC (Shellcode)
Uses Websockets

SpiderPIC integrated into makefile

Backend by my colleague @invist



79

Deephash: Lastenzug + SpiderPIC



80

Questions?

https://github.com/codewhitesec/lastenzug
Includes SpiderPIC and Lastenzug

Type make to build

https://github.com/codewhitesec/lastenzug


Code White GmbH
Am Albert-Einstein-Platz
Eingang: Sedelhofgasse 19
89073 Ulm / Germany

+49 731 141 115 0
info@code-white.com
www.code-white.com


